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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE NO. 1519

THE BUCKLING OF A COLUMN ON EQUALLY
SPACED DEFLECTIONAL AND ROTATIONAL SPRINGS

By Bernard Budiansky, Paul Seide, and Robsrt A. Weinberger

SUMMARY

A solution 1s presented for the problem of the buckling of a
column on equally spaced deflectional and rotetional springs. Useful
charts, whilch relate deflectional spring stiffness, rotational spring
stiffness, and buckling load, are given for columms having two, three,
four, and an infinjte number of spens.

INTRODUCTION

A problem thet arises in the analysis of alrcraft structures is
the determination of the buckling load of a column which is supported
at points along its spen by other sitructural members. In general,
the supporting msubers restraln the columm elastically ageinst both
deflection and rotation. It is therefore convenient to consider that
the elastlc restraints coms from deflectional and rotatlional springs at
the points of support.

. By solving the column differential eguation, Klemperer amnd Gibbons
(reference 1) found the buckling load of simply supported columms
subdivided into two, three, end four spans by equally spaced Inter-
mediate deflectional springs of equal stiffness. Zahorski (reference 2),
using the same approach, extended these resulis for columms with
two and three spans by also consldering intermsdiate rotational springs
of equal stiffness. The method of solving the column differential
equation 1s unduly laborious, howsver, for columns having meny spans
since each possible buckling configuration must be considered separately;
consequently, & solution to the case of an infinite number of spens was
not obtained. :

By using difference equetions, Ratzersdorfer (reference 3) and
Tu (reference U) obtained an expression for the buckling load of
columns with any number of spans on deflectional springs alone (fig. 1(a))
and, in addition, were able to solve for the case of an infinite number
of spans. In the present paper, the Rayleigh-Ritz ensrgy method is used
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to extend the results by considering, ih addition to deflectional springs,
intermediate rotatlonal springs of_ equal stiffness end end rotational
springs of half the stiffness of the intermediste springs (fig. L(b)).

The special end-support conditions specified for the present problem
facilitate an exact solution for the case of any mumber of spans and
permit the derivation of e limiting expression for the case of an
infinite mmber of spa.ns
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RESULTS AND DISCUSSION

The results of this paper are presented in terms of the folléwing 1
three nondimensional parameters: -~ - . T s oo '
Pl'.2 - T LI R omAaITT oL 5
T buckling-load paramster -~ -~ 2 o o . L K C o
cL3 ;
Fr  eflectlonal-stiffness pevemeter :

P “'
%LI rotational-stiffness pa.ra.meter :
where : . SRR R A T - - : =~
P buclcling load. L Gaula el - w ‘ o ’
L - length be'bween suppor'bs R ) ] ) N

LY T e

EX column 'bend.ing s'biffne 88

RPN

'd.eflec“biona.l spr:Lng consta:rrb force per u.nit d.eflection .

K rotatlonal spring gonstan'b torque per u:ni'b rotation

The curves of figures 2 'bo 5 show 'bhe rela.‘bionships a.mong these
parameters for columms of two, three,.four, and an infinite number of
spans. The curves were obtained from the exac'l: stability equations
derived 'by the Ra.yleigh-Ri'bz energy method. :Ln a.p;pend.ixes B and C.

s atre S g% e s,

The d.iscontinuities of the slopes of 'bhe ocurves in figures 2 to U
correspond to sudden changes 1n the type of buckling pattern; the
number of buckles g corresponding to each region between these
discontinuities is given in these figures. .The curves for the infinite-
span column (fig. 5) are smooth because the buckling configuration -
varies continuously with chenges in defleciional support stiffness. '
The horizontal pexrts of each curve of figures 2 to 5 correspond to .

* buckling wilth no deflsction of the supports and with the number of -
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buckles equal to the number of spans. (See fig. 6(a).) The buckling
load 1s then independent of the deflectional spring stiffness.

For the infinite-span colwmn (fig. 5), perts of the curves for

% =20 and %I:-E = 50 are seen to be coincldent with the curve for
-EKIE' = . These perts correspond to buckling with the columm deflection

curve horizontal at the supports (see fig. 6(b)) so that the buckling
load is no longer dependent on the rotatlonal spring stiffness. In

the finite-span columns this independence of rotational spring stiffness
never occurs but 1s approximated more end more as the number of spans
increases; this approximation is shown by the increasing proximity of
the curves for E¥ =20, 50, and « in figues 2 to 4. A discussion

of ‘bhis, phenomenon is given in appendix C.

The curves for the ilnfinite case may be used to obtaln & closs
approximation, on the conservative side, to the buckling load of a
column with more than four spans. The error involved, shown by figure 7
to be less than 10 percent for the four-span case, decreeses as the
number of spans increases. - 7

Iangley Memorial Aeronautical Leboretory
National Advisory Commlttee for Aeronautics
Langley Fleld, Va.
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SYMBOLS

distance along column (fig. 1(b))
deflection of colum (fig. 1(b))
deflection of support

number of spens

length between supports

colunm bending stiffness

buckling locad

[p12 >
dimensionless buckling-load parameter ( E—i—

dsflectional spring constant, force per unit deflection
dimenslionless deflectional-stiffness parameter @%
rotatlional spring constant; torque per unit rotation
dimensionlisss rotational-stiffness paramster <§EE
integers

integer definling locatlion of a support <xc = c@
number of buckles

Kronecker delta (1L if m=mn; O if m # n)
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APPENDIX B
DERTIVATION OF STABILITY CRTITHRIONS

The following development of the stability criterlons for a
column on equally spaced deflectional and rotational supports is based
on the Rayleigh-Ritz ensrgy method. A Fourler seriss is chossn to
represent the deflectlon curve of the buckled columm, and the potential
energy expression ls minlmized wlth respect to sach of the unknown
Fourler coefficients. The resulting equations are separated into
independent sets, each set containing the coefficlents corresponding
to a partlcular buckling mcde. A general expression for the stability
criterion for each buckling mode is derived.

Energy Expressions

The deflection curve of the buckled columm may be represented by
the Fourler series

-]

y=Zansj_nn-ﬁ-L—’°‘ (B1)

n=1

When the initially straight column buckles, the bending energy
stored in the column is

= % L Z nL"a.n2 (B2)

N'l 02
Vi = AR
d 2
c=1
G N-~-1 o e o
=3 Z &y sin S (B3)
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The energy stored in the rotational springs 1s

N-1 2 2
it DNIDI GRS G
e N nne +
=-2- - Z=O Znancos-> T ('B%F)

E’Oc +8Nc

The ends of the column move toward each other and the work done by the
buckling load is

@i @

n=1
The buckling load mey be found by minimizing the energy expression
FoVy+ Vg +V, W (86)

with respect to the a's. Substitution of equations (B2) to (B5)
into equation (B6) gives

3 Zi
F = ﬂ [ —— ilanz + Q.E.—S &n Sin -—--
)-l- (NL)3{Z (ﬁ,j) = n_l
ONT . nR\° 1
+ s °=0( ?_l ne, cos —N> T o v om, (B7)
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Minimization

Minimizing F with respect to the a's yilelds

FE _ o
day
2 © N-1 )
N 2 | 2838 mrc finc
=n-C~L>n a, + — 3~ &y gin =~ gin =
nJ t — N K
m=1 c=l
B3 > s l
mnc nae .
mna,, — co8 —
2 m=1 N ¥+ t?’Oc * ch

Consider the summations

and

E mrc nnc 1
COE_ ] co8s N

(B8)

F1t]
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Appendix D shows that the summations have the following values:

Condition N-1 N
e anc
m+n m=-n E sin-i-sin-l-q—- Ecosgﬂﬁgcosnﬁgl_bsl*_
Not Not
integer | integer 0 Y
-~ Integer | Integer o N
Not
Irl'be@r integer 'g ‘g
Not K R
/ integer Integer 2 2
For a given value of n, the condition that willl apply for each

value of m 1s Indicated in the following teble where p i1s & positilve
r 1= & positive integer such that r + p 18 even, and k;j
are integers (plus or minus) ylelding positive m:

integer,
end ko

Condition
m+n m-n |y apN n # pN
2N 2N
Not Not m#2okN -n
integer |integer |® % ¥ |{ m 4 210K + n
Integer | Integer |m = N Never
‘Not m=2kN - n
Integer [ integer | Never m# 2kpN + n
Not m # 2N - n
integer Integer | Never m = 2N +n
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A}

The infinite set of equations (B8), with the use of the values
of the summetions, mey be divided into the following three independent

infinite sets of equatlons:
bV 2 2N°T 9 |
EPN) C‘; (pN)= | apy + Y ¥ 2 rNe g = 0 (B9)
r=l,3,5

‘ | (p = 1,3,5,---)
EPN)M ) G_T_D? (PN)E] By + 222-—23 pN r;ﬁ rNe o = 0 (B10)
(p .;‘a,u,.".s,...)
@ A B I

N°Tn '
+ —== my + E mea, |\ =0 (B11)
2 @ g . .

(n = 1,2,3,’. . a)

(n ¥ oN)

-where mj = 2kyN - n, m, =2k N +n, and the sumetions are over all
plus or minus integral values of ky and k, that yleld positive m
end m,,

Equations (Bll) may be further subdivided into N - 1 indepsndent
sets. Consider one of equations (B1ll) for & particular n egqual to g;
the a's eppearing in the summations will have the subscripts

m =2N-q, WN-q, 6N -qg,. . .
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and

m, =q, 2N +q, uN +gq, 6K + q,.

RACA TN No. 1519

If equations (Bll) are now written for n equal to these preceding
values, a's having the same subscripts, and only these a's, will

appear in the summations. Thus if

n=gq, 2N+gq, 4N +q, 6N +4qg,. .

then

m =2§ -qg, 4N -q, 6N -q,s «
and

my,=q, 2N+gq, 4N +q, 6N +gq,. .
I

n=2N-gq, 4-q, 6N-q,. ..
‘then

m =gq, 2N +gq, UN+gq, 6N +gq,. .
and

mg = 2N - q, iy - q, 6N - dyes o o

Then, an ‘infinite independent subset of equations
the following two groups of equations (equations (B12)

(B11) is given by
and (B13):

Eesl\r )t - C%‘) (2aW + Q)E:la'QEN-l-q_,..l' e ; E‘zkmq i a'2(k+l)N—q:,

o
NeT
+ 35 (e + ) > e + ey,
k=0

+-[2(1C + 1)N -~ ¢q a‘2(k+l)N-q =0

(5 = 0,1,2,...)
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{[2(5 +1)N - g - - C%D2 [2(5 +_ N - Jz}a?(sﬁl)li-q

s

b, = '
NS -
522 (et - o]
k=0

P

. ggg [?(s + 1N - é] :E:j [é(k + )N ~ i] 82(k+1)N-gq
- _

k=0

+ (2kN + q)aEkN+q =0 , (B13)
(s = 0,1,2’...)

711 the equations of (Bll) are given by N - 1 sets obtained by
letting q 1in equations (Bl2) and (B1l3) essume the velues 1, 2, . . . N - 1.

Stability Criterions

It has been shown that equetions (B8) cen be broken up into N + 1
subsets, two of which are given by equations (B9) and (B10) and the
remeining N - 1 by equetions (B12) and (B13). Each set contains a's
appearing in no other set; hence, each set of equations leads to an
independent stability criterion corresponding to buckling in a particular
mode. These criterions are derived as follows.

First consider equations (B9) which involve only the Fourier
components &y, a3N,. .« «y which correspond to buckling of the column

with nodes at the supports and with a symmetrical buckling configuration
in each bay. Solving for agy and multiplying through by ©pN gives
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: 2 «_ .
Py = - NPT (pN) Ny (514)

P (o) -(‘,%—ﬁ)z<pn)2 r=i3,5

(p = 1,3,5,...)

Summing over p yilelds

[

oN2T o (pm)® <
pa, . = - —— rN; (B15)
? pN _S_ E 8p
p=1,3,5 “2 »=L,3,5 (pN)h‘ -<’%>2(PN)2 I‘=l’3,5

Since

»=1,3,5 r=1,3,5
0
[ 4
> 2
£ - -. ] . 3
T Z o (316)

which 1s the desired stebllity criterion.

Equations (B10), which contain only the Fourier coefficlents &y, )

&)xns 2ys ¢+ + - » yield a criterion for buckling of the columm with

an antisymmetrical buckling configuration in each bay and with ncdes at
the supports. This buckling criterlion need never be considered because
it always gives a higher buckling-loaed than does equation (B16).

In order to obtain the buckling criterions for the other modes,
equations (Bl2) and (B13) are transposed as follows:



- ' -SE m
%
Faalig = g Z [a
[ ( + ﬁ, k=0

i
: -
N 3)%5+9-
.5
T

I

2(k+l)N-q_]

X=0

Bo(s+L)N~q =

[2(9 +1) - n] (er1)-d

I
+ 12

Z [aakmq 2(k+1)11-<;]

i_a(s +1) - 1ﬂQ2(s+l)

where

Q2(3+1) -% =

' 2
L
q ==

Z {(2" * Decaneg * E(k +1) -

-3 k=0

- (s + %)2
1%)2 - [2(3 + 1) - %:Ie

8 =0,1,2,. . .

a =12, ..

N-1

Z{@k + ;Iu) ol l:?(k +1) - ] 2(ke+1)N- q} (817)

q]%(m)n_ q} (318)

*Oif NI VOVE

6TCT

€T
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For any velus of q, swming equations (B17) end equations (B18) over & and subtracting
equations (B18) from eq_uationa (817) gives

~ -
g E’Esﬂﬂ ] E"2(s+l)N~q:I " fﬂg["equ - a‘e(k+l)N-rJi{ —1*2 + x > >
g=0 L-<2|a + @ QEB"% I:(s + 1) ---] 2(B+1)--J
%Z @ + )a2kﬂ+q Eé(k +1) - ] o (k)N i —T
=0 8=0 éa + ﬁq?m_%
. & (Bl?)

- [2(3 +1) - laqe(sﬂ)-%J

Multiplying equations (B17) by 28 + 9' and equations (B18) by 2(s + 1) - — sumaing
over s, and adding the two equetions ylelds

6TCT "OH KT VOVH




+

i és + %aeslﬂq + [2(5 +1) - %]af?(sﬂ.)-% = %Z I:aqu
8=0 | o

. 1

q
EQ(B R q’c‘(s+l)‘%

6TCT °ON KL VOVH

1
- ra'a(ka»l)l!-‘] Z (Es . %QE

B+

T

+ :_.2 Z{Ek + %ﬂm + [E(k +1) - %’.laa(kd)ﬂ-'l i l} 1 g-+ QE(;]_)_;J (B20)
N

k=0 8=0 2|s+li

Denoting the left slde of equatlion (B19) by X end the left elde of egquation (B20) by Y and
resrranging the equations gives

L o«

X = - 2 + . L
5 5% @s + %2-%”% - [2(; +1) - '%]EQZ(HD_%

SN ,
(5 ] : -0 (521)
8 BZ(; @s + @st-'_% E?(e +1) - %Qe(tﬂl) _%_




ot

- _Z (——%5%3 NECEEY @a( o-d

| 2 S 1
+ Y/ = - + = 0 (322)
T g=0 [Q23+% q‘e(ml) -%:l

Fgueting the determinent of the coefflclenta of ¥ and Y to zero yields the N - 1 stabllity
criterions corresponding to ¢ = 1,2,3,. . - N -1

ﬁ - i 1 4 X 1[3 - 2 L + =
5 ¢ G’:‘s + %)26129_'_% E-E(B +1) - g_leqz(su)-% T [QEB+% B(ee1) -3

S z - (B23)
5D B homg ) 3

6TCT *OK NI VOVH
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or
L 2
2 _
@--9@-9-0 =0 (B2k)

and C denote the series of equations (B23).

where A, B,
N - 1 equations, together with equation (B16)

These
(-]
%=-- Z ———-——-———2n2°_ 5 (BL6)
p=1,3,5 F G)

constitutes the complete set of stability criterions.

The Fourlsr expression for the columm deflection curve corresponding
to each of the criterions of equations (B23) contains only the coefficients

80 ®pN+gr ChWs? 6F+q’”

and.

8o-q’ YuN-q® Z6N-¢7° °

Each of the criterions are satisfied by many different buckling loads
the lowest of which will be obtainsd

for given values of S and T,
when the coefflcient 8q 1s dominant.

Each criterion of equatioms (B23) for a given gq therefore corresponds
to a buckling configuration of q buckles. Eguation (B16), as previously
indicated, corresponds to buckling with no deflection of the supporis
in N Dbuckles.

Closed Forms of Stability Criterions
Each of the series in equation (B2k) may be evaluated and the
Series B and C ere

stability criterions expressed 1n closed form.
evaluated first since the results are necessery in the evalustion of

geries A.



Series B.~ Iet %:b and -Ii=d- Then,

)
i 1, 1
[Q’ES'I%‘ Q(s+1) -%

o0

1 -1
z: a? -._(Eé + b)2.+ az - [2(8 +1) - 'E_l‘?

=0

0
1 Z 1 1
= + +
a2 - v? e [12 - (28 +1)2 42 - (28 - b)E:I

[

1 i 1 . 1 ) 1
_gs+(d+'b) og - (d -b) 28+ (d-Db) 28~ (d+Db)

o
]
-

n
(]
+
S
M1

d.2 _'b2

a2 - p2

]
[
1
A Ly
LIV Te

[ 2(d + D) f 2(d - D)
4s2 - (4 + D)2  Us® - (d - b)°

L L) 1
ST T

&la
N

d_2 - b2

o]
1]
Pat]

8T

6TGT *ON NI VOVN
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With the use of equation (6.495) for cotangent in refersnce 5, the
sumation Is equal to

1 x 4 2 F g 2
— t = D) - t d -Db) ~
* 55 | oo 2(d.+ ) vy + co 2( ) ::(d.—b)]

a2 - p2

_ X sin =d
" 24 cos xb - cos nd

L
72 sin 3

%COSﬂ%'GOB%

Series C.- For series C

0

2

1 i 1
‘s @s + ﬁ)Qes_,_% [2(8 +1) - %]Qe(s.i.l).%

- — S Y - - 1 —
- , " -9 = \(es + p)[a2 - (28 +)2]  (2s - v)[a2 - (28 - B)T]

- 1 +}-Z[ 1 1 1 ! 1
b(a% - 2) 24z les+b 225+ (a+b) 228 - (a- D)

1 1 1 1 1 ]
- +- —-—
.28 -b “28+(d-D) 205 -(d+D)

_.__.L.____l_i 2b L1 2(d + b) 1 o(d - ) :‘
b(a2 - v2) a° S lue? - v 242 - (@ +D1)2 2 ue2 - (a - 1)



Ueing equation (6.495) for cotangent in reference 5 ylelds after simplifying the closed
form

'S sin xb(l - cos xd) -3 -Lz"_gin ,[%(1 - oos §
<+ 2 (cos #b =~ cos md)(1 - cos xb) (;3)2 (oos n% -~ cos !:-D(J_ - cos ,%)

Series A.- For serdes A

: 1
BZ éﬂ + ]%)EQQ§+%

+

1
@“*”‘ﬂ%uwnﬁ

- ____l;____,+:E: _1 . 1 N
v2(a? - 1) o (es + v)2[a2 - (28 +-;;§] (28 - p)2[a2 - (25 - p)?]

,._,._......_]‘_..__..,,.:E. 1 + = + 3 + L
22 -12) a? o l(es +1)2 a2 -(2s+b)? (28 -Dp)2 42 - (28 - B)°

< 2
=——-—l——-—+LE-—-—g— + ai +[ L + L
v2(a2 - 12) a® Sy lhe® -v° (42 - 122 (8% - (28 +1)? 42 - (28 - B)?

6TGT “oN NI YOV




Using the results of the preceding evaluations end differentiating equation (6.495) for
-]

2
cotangent in reference 5 to evaluate the term m—-@————é yields after simplifying

am1 (882 - V2)°
L
. X sin 3

%2 1 x sin xd - o 1 . x*
232 1 - cosnb 2:13 cos xb - cos xd %@El-cosn% 26‘)3 cosx%-coa-%‘

Closed forms.- Substltuting theee resulta of the three serles in equations (B23)
glves

sin L L

1
T

1 1 1 E!in3
] EGDZQ - co8 '%) + 26’?@05 1% -~ oo8 %) 2%'603 u% - coB %’)

2
-}-‘-sin n%é_ - 008 -%')

- = 0 B25
G.)E 0os 7 - cos L - co8 3 ( )
5 3 R
as the closed-form stability criterions for buckling in the modes where q = 1,2,. . . N - L.

6TGT "OM NI VOV

T2
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The series of equation (B1l6) mey be eveluated as follows:

2
p=§3,5 P - (%)2

i

- Z ° L (B26)

e%p-1351=2=f2-4(1‘3>

From eq_ua.'bion (6.495) for tengent in reference 5, the sunmation 1s equal

to tanés; hence,

T=--—2-I-f (B27)
mé-a -

which 1s the stebility criterion for buckling in N buckles with nodes
at the supports.

Equations (B25) and (B27) constitute the complete set of closed-
form stebility criterions. The correct criterion for any glven values
of S and T is that which yields the lowest buckling load.
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APPENDIX C
STABILITY CRITERION FOR N =

When N becomes infinite, q/N can assums any valus between O
and 1. Therefore, it becomes necessary to find the value of ¢/N that
mekes the buckling-load perameter L/J a minimum for given values of
deflectional-stiffness parameter S and rotational-stiffness paramster T.

The required condition is
.6
=0 (c1)
2
")

However, L/ is defined implicitly by a function (see equations (B25))
£(s, T, L/3, a/M) =0 (C2)

where

o<%<1

Taking the total derivative of equation (C2) and keeping S and T

constant gives
B @ o
® 0O

«3)
But mist vanish. Therefors a requirsd conditlon for minimization
26

of L/T is
o(f)

@

(ck)
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Expanding equations (B25), clearing of fractions, and dividing by

(@ - cos )(eos «§ - oos L) yiorss
- 25 (Gon & - 005 ) + s - cos w50 }L—
r[famd 2@ - oo D)+ edB)rotnd @ - cos )
; u@h@ - o8 %7 (o0 =3 - c0s )

when
q
o< K< 1

Then, setting a(f)/%Q%) equal to 0O glves

. L L L L
g_l+cos—]_§J#sin3+?sin3 (06)
cos 7y = 2 i )3 ¥ 7L
d J
when
q
=<
O<N 1l

Substituting equation (C6) in equation (C5) yields after simplifying



r
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. 2 3
826 - sin%) - llS(%‘> G’ + sin%') @. - cos %’)

+25TG‘>2 Ein%@+ Bin%')- h{1 - cos%>]
- 1}'1‘(%)5 ein % 1 - cos %D
+ 'I‘Ee-j'))-L sin2 %‘ + L;@)s@ - cos %‘)2 = 0_ , (cn

which is the stebility criterion for a column with an infinlite number of
spans when O < % < 1.

When q/N is equal to its limiting velue, 1, eguation (C5) ylelds
two independent criterions:

ii’}/y:go
. =2 YL <
o8 T=-—— — TEx (c8)
tean —
23

o) B

3
% L
hC.?) sin 3

\ — BT
%’-sin]—:' - 26- cos %)

S =

J.

which corresponds to column buckling with no support rotation.
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In order to obtain the curves of figures 5 and 8, equations (C7)
to (C9) must be carefully used in conjunction with each other. Thus,

for example, along the curve for KL 5 in figure 5, equation (c7)

ET
is used up to eL” _ 58.7, at which point equation (C8) is satisfied.
El KL, PL2

s CL2 Cle KL
For greater wvalues of BT’ the combinations of BT T’ and 5
which setisfy equation (C7) will make g/N imaginary (cos :[% < -1

in equation (C6) . Hence, beyond the limiting value of ,%—, /¥
remains equel to 1 and the buckling load remains constant.” The dashed-
line demarcation curve In figure 5, which gives the limiting value of

is obtained by eliminating KL between equations (C7) and (C8).

EI
cr3

Similarly, in figure 8, along the curve for F7- = 25, for example,

equation (C7) is used up to :EI% = 14.0, at which point equation (C9)

is satlisfied. For greater values of %LI' , the combination of -%:é,

K, B2 ) velues of
21’ 5 which satisfy equation (C7) yields imaginary ues of gq/N.
KL

Beyond the limiting value of T therefore, the buckling load remains

at the value given by equation (C9). The dashed-line demercation curve

3

2

b4

Al

of figure 8 1s obtained by eliminating %;_ between equations (C7)
and (C9). '

The pecullar shape of the demarcation curve of figure 8 accounts
for the peculiarities of the behavior of the curves for & 20

KL XL BI
and el 50 in figure 5. If P is greater than 11.04 (the minimum
value of %Li on the demarcation curve) a constant -g:I['-line wvill -

intersect the demarcetlon curve in two points. Between these polnts
the buckling loads are independent of the rotestional spring stiffness

and are squal to the buckling loads for %I'I =w which accounts for the
fact that along parts of their length, the curves in figure 5 for

XL KL = . . : XI1,
= =920 and = = 50 e for — = .
o 5T 5 coinclde with the curwv BT o

It is of interest to note that buckling which is independsnt
of the rotational spring stiffness cannot ocour when the number of epans
is finite, but dees occur for the infinite case. For the buckling load
to be independsnt of the rotational spring stiffness, the columm deflection
curve must be horlzontal at-sach support. In the case of finite columns,
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this conditlon can obviously not be fulfillled at the end supports
so long as the rotational spring stiffness is finlte; in the infinite
columm, howsver, there is no end effect and the column cen buckle

as shown in figure 6(b).

27
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APPENDIX D

EVALUATION OF SUMMATIONS ENCOUNTERED IN
DERIVATION OF STABILITY CRITERIONS

N-
Evaluation of E sin m_;;g sin n—;—c

c=1
N-1
In order to evaluate E sin m_;_c sin n__;_c Pirst make the substi-
c=1
tutions
mxc mxc
1% _ i
mye _ 2 -2
sin N = 51 (D1)
and
1B4¢ -1
nme s 02)
N - 21
Then
N-1
sin mxe sin nxe
N i
c=1
N-1
mxc nxe
= gln — n———
Z N gin X
c=0

L}

N1 TG, . ne nc %G
%Z[eiN (m+n) ‘e iN(m+n) } e1-1?-(m-n) _ e-i-ﬁ-(m-nzl (03)
c=0
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Case 1l: m +n eoven.- Consider the summation of the first term
on the right-hand side of equation (D3)

2 ZON
> RS (F) 2

According to reference 6, page 36, this swmation is recognized

as the sum of the ( = Z 2)th powers of the N Fth roots of unity and the
sum is N or O eaccording as m-; 2 is or is not a multiple of K.

The su.unna.tion of -bhe sscond gensrel term in eq_ua.ti.on (D3) is also the

sum of the th powers of the N Nth roots of wnity. The sumations

of the last 'bwo terms are the sum of the (= ; D th powers of the N Nth
roots of unity. Hence, the following conclusions may be made: If

neither m +n nor m.-n is a multiple of 2N,

N-1

E (o] nxc
sin "E’ sin X - 0

c=1l

If both m+n and m - n are miltiples of 2N,

N-1
nrec
_;_ sin =2 gin — = 0
N N
c=1

If only m+ n is a: multiple of 2N,

N-1
mic ntc _ N
s Ml S
c=1

If only m - n 1is a multiple of 2N,

5
=g
5
=l
h)';z



Case 2: m+ n 0dd:- Conalder the summation

N-1
Zei%c—(mm) =1+ eil%(mn) + l;j%(m)]g o0+ Eiﬁ(m-m)]ﬁ'l

G

] . gWi{mm)

LY = rtemAreesrereure—————

g;
1- E’N(m-m)

Now

eni(m-!-n) = cos t(m + n) + 1 ain x(m + n)

- -1

glnce m+ n 1is odd. Hence

ne :
E ol ¥ (w+n) _ P

=0 1 - e‘,‘}(mm)

Performing similar operetione on the other sumations of equation (D3) ylelds

z sin B2 gin 5F = L I + ]:Ei - Y - A
P TN R em) R ) R 1- e"?(mm)

=0

(D5)

(D6)

(07)

6TCT *ON MT YOVE




Since m +n 1is odd, neither m+ n nor m - n 1s a mltiple of 2N; and the resultis

of case 2 mey be included in the first conclusion for ocase 1.
1
+ Bpo + Bpo

4]
- +% cod ni -cos mn

)
Evaluation of Z cos ]E%E co8 n_%c_r
c=0.

In the eveluation of the -sulmtion

c=0
N-1
= E cos — €08
6=0
nmake the substitutions
e mic
mo o'V so N

cog = =
2

(08)

(09)

(D10)

6TGT O NI VOVN
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Then
. - 1
Z msc nxe
cos cos
‘s N N Q+50c+_5ND

X-1
nc -3 8¢ S (m- ~-18C (m-
1 [i.n(nwn) in(m+n) iN(m n) iN(m n)] 1/ mn
=T e + + e + + -1 -1
P> 2GR -1

[}

(D11)

Cese 1: m + n even.- Applying the theorem of reference 6
regarding the sum of powers of the N Nth roots of unity and noting

that % <__lm+n - J) = 0 results in the following conclusions: If

neither m +n nor m - n 1s a multiple of 2N

N
cos =2 cog S L =
N N \l + 8¢ + Byq
Cc=

=0
If both m+n and m - n &are multiples of 2N
N .
E mnc nxc 1
co8 T COB == =N
pr N N Q + B + GNcD
If only m +n 1s a multiple of 2N
N
E cos B2 cos B2 = =3
= N N \1 + By + By, 2
If only m - n i1s a mltiple of 2N
i
mxe fak; (o} 1 N
_S_ cos == cog = [ —m——=—— ==
¢=0 N N Q + Bge + Byg 2
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Cage 2: m + n ' odd.- By use of the same evaluation procedure as
for case 2 of the previous seriles, the summatlon on the right-hand
side of equation (Cll) is found to be equal to 1. However,

1
5 C_lm+n - D equals -1 when m + n 1s odd, and hence

N
mxc nxe 1
cosS —— cOB — =0 (D12)
> N ] Q+ B + 5@

c=0

This result may be included in the filrst conclusion for case 1 since,
if m+n is odd, neither m+n nor m-n is a multiple of 2N.
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-Figure |.— Golumn on elastic supports.
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Figure 2.~ Buckling curves for two-span column.
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Figure 3.~ Buckling curves for three-span column.
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Figure 4 — Buckling curves for four-span column.
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Figure 5.~ Buckling curves for column with an infinile number of spans. .
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(a) %4. No support deflection.

I

(b) %=l. No support rotation.

Figure 6.— Limiting buckliing configurations.
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Figure 7.— Comparison of buckling curves for columns with four spans and on infinite number of spons.
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